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Abstract – The problem of the low-velocity impact of
an elastic sphere upon a nonlinear doubly curved shallow
panel with rectangular platform is investigated. The ap-
proach utilized in the present paper is based on the fact that
during impact only the modes strongly coupled by the two-
to-one internal resonance condition are initiated. Such an
approach differs from the Galerkin method, wherein reso-
nance phenomena are not involved. Since is it assumed that
shell’s displacements are finite, then the local bearing of the
shell and impactor’s materials is neglected with respect to
the shell deflection in the contact region. In other words,
the Hertz’s theory, which is traditionally in hand for solv-
ing impact problems, is not used in the present study; in-
stead, the method of multiple time scales is adopted, which
is used with much success for investigating vibrations of
nonlinear systems subjected to the conditions of the inter-
nal resonance.

Keywords – Impact-induced internal resonance, impact
response, doubly curved shallow panels with rectangular
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I. INTRODUCTION

Doubly curved shallow panels under impact load are
encountered frequently in practice [1]. Nonlinear behav-
ior of some types of thin-walled doubly curved panels un-
der large deformation is very sensitive to their parameters
involving their curvatures. Thus, it has been revealed in
[2, 3] that such an important nonlinear phenomenon as the
occurrence of internal resonances, which are governed by
the shell’s parameters, is of fundamental importance in the
study of large-amplitude vibrations of doubly curved shal-
low shells with rectangular base, simply supported at the
four edges and subjected to various dynamic loads.

∗Some of the results had been presented at the 2015 International Con-
ference on Mechanics, Materials, Mechanical and Chemical Engineer-
ing (MMMCE’15), Barcelona, Spain, 7-9 April 2015. This research was
made possible by the Grant No. 2014/19 as a Government task from the
Ministry of Education and Science of the Russian Federation to Voronezh
State University of Architecture and Civil Engineering

In spite of the fact that the impact theory is substan-
tially developed, there is a limited number of papers de-
voted to the problem of impact over geometrically nonlin-
ear shells. Literature review on this subject could be found
in Kistler and Wass [4].

An analysis to predict the transient response of a thin,
curved laminated plate subjected to low velocity transverse
impact by a rigid object was carried out by Ramkumar and
Thakar [5], in so doing the contact force history due to the
impact phenomenon was assumed to be a known linear-
dependent input to the analysis. The coupled governing
equations, in terms of the Airy stress function and shell
deformation, were solved using Fourier series expansions
for the variables.

A methodology for the stability analysis of doubly
curved orthotropic shells with simply supported bound-
ary condition and under impact load from the viewpoint
of nonlinear dynamics was suggested in [1]. The nonlin-
ear governing differential equations were derived based on
a Donnell-type shallow shell theory, and the displacement
was expanded in terms of the eigenfunctions of the linear
operator of the motion equation using the Galerkin proce-
dure. To analyze the influence of each single mode on the
response to impact loading, only one term composed of two
half-waves was used in developing the governing equation,
whereas the contact force was proposed a priori to be a sine
function during the contact duration.

The review of papers dealing with the impact response
of curved panels and shells shows that a finite element
method and such commercial finite element software as
ABAQUS and its modifications are the main numerical
tools adopted by many researchers [6]–[20], in so doing the
load due to low velocity impact was treated as an equiva-
lent quasi-static load and Hertzian law of contact was used
for finding the peak contact force.

Recently a new approach has been proposed for the
analysis of the impact interactions of nonlinear doubly
curved shallow shells with rectangular base under the low-
velocity impact by an elastic sphere [21]. It has been as-
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sumed that the shell is simply supported and partial dif-
ferential equations have been obtained in terms of shell’s
transverse displacement and Airy’s stress function. The lo-
cal bearing of the shell and impactor’s materials has been
neglected with respect to the shell deflection in the contact
region, and therefore, the contact force is found analytically
without utilizing the Hertzian contact law. The equations
of motion have been reduced to a set of infinite nonlinear
ordinary differential equations of the second order in time
and with cubic and quadratic nonlinearities in terms of the
generalized displacements. Assuming that only two natural
modes of vibrations dominate and interact during the pro-
cess of impact and applying the method of multiple time
scales, the set of equations has been obtained, which al-
lows one to find the time dependence of the contact force
and to determine the contact duration and the maximal con-
tact force.

Further the approach proposed by Rossikhin et al. [21]
has been generalized by the authors [22] for studying the
influence of the impact-induced three-to-one internal reso-
nances on the low velocity impact response of a nonlinear
doubly curved shallow shell with rectangular platform.

Such an additional nonlinear phenomenon as the inter-
nal resonance could be examined only via analytical treat-
ment, since any of existing numerical procedures could not
catch this subtle phenomenon. Moreover, impact-induced
internal resonance phenomena should be studied in detail
as their initiation during impact interaction may lead to the
fact that the impacted shell could occur under extreme load-
ing conditions resulting in its invisible and/or visible dam-
age and even failure.

Because of this and to investigate the mechanism of
impact-induced internal resonance, in the present paper, a
semi-analytical method proposed previously [21, 22] is ap-
plied to investigate doubly curved shallow panels with a
rectangular boundary and simply supported boundary con-
dition subjected to impact load, resulting in the impact-
induced two-to-one internal resonance.

II. PROBLEM FORMULATION AND GOVERNING

EQUATIONS

Assume that an elastic or rigid sphere of mass M moves
along the z-axis towards a thin-walled doubly curved shell
with thickness h, curvilinear lengths a and b, principle cur-
vatures kx and ky and rectangular base, as shown in Fig. 1.
Impact occurs at the moment t = 0 with the low velocity
εV0 at the pointN with Cartesian coordinates x0, y0, where
ε is a small dimensionless parameter.

According to the Donnell-Mushtari nonlinear shallow
shell theory [23], the equations of motion in terms of lateral

Figure 1: Geometry of the doubly curved shallow shell

deflection w and Airy’s stress function φ have the form
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whereD = Eh3

12(1−ν2) is the cylindrical rigidity, ρ is the den-
sity, E and ν are the elastic modulus and Poisson’s ratio,
respectively, t is time, F = P (t)δ(x− x0)δ(y − y0) is the
contact force, P (t) is yet unknown function, δ is the Dirac
delta function, x and y are Cartesian coordinates, overdots
denote time-derivatives, φ(x, y) is the stress function which
is the potential of the in-plane force resultants

Nx = h
∂2φ

∂y2
, Ny = h

∂2φ

∂x2
, Nxy = −h ∂2φ

∂x∂y
. (3)

The equation of motion of the sphere is written as

Mz̈ = −P (t) (4)

subjected to the initial conditions

z(0) = 0, ż(0) = εV0, (5)

where z(t) is the displacement of the sphere, in so doing

z(t) = w(x0, y0, t). (6)
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Considering a simply supported shell with movable
edges, the following conditions should be imposed at each
edge:
at x = 0, a

w = 0,
∫ b

0

Nxydy = 0, Nx = 0, Mx = 0, (7)

and at y = 0, b

w = 0,
∫ a

0

Nxydx = 0, Ny = 0, My = 0, (8)

where Mx and My are the moment resultants.
The suitable trial function that satisfies the geometric

boundary conditions is

w(x, y, t) =
p̃∑
p=1

q̃∑
q=1

ξpq(t) sin
(pπx
a

)
sin
(qπy

b

)
, (9)

where p and q are the number of half-waves in x and y
directions, respectively, and ξpq(t) are the generalized co-
ordinates. Moreover, p̃ and q̃ are integers indicating the
number of terms in the expansion.

Substituting (9) in (6) and using (4), we obtain

P (t)=−M
p̃∑
p=1

q̃∑
q=1

ξ̈pq(t) sin
(pπx0

a

)
sin
(qπy0

b

)
.

(10)
In order to find the solution of the set of equations (1)

and (2), it is necessary first to obtain the solution of (2).
For this purpose, let us substitute (9) in the right-hand side
of (2) and seek the solution of the equation obtained in the
form

φ(x, y, t)=
m̃∑
m=1

ñ∑
n=1

Amn(t) sin
(mπx

a

)
sin
(nπy

b

)
,

(11)
where Amn(t) are yet unknown functions.

Substituting (9) and (11) in (2) and using the orthogo-
nality conditions of sines within the segments 0 ≤ x ≤ a
and 0 ≤ y ≤ b, we have
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where

Bpqklmn = pqklB
(2)
pqklmn − p

2l2B
(1)
pqklmn,

B
(1)
pqklmn=

∫ a

0

∫ b

0

sin
(pπx
a

)
sin
(qπy

b

)
sin
(
kπx

a

)
× sin

(
lπy

b

)
sin
(mπx

a

)
sin
(nπy

b

)
dxdy,

B
(2)
pqklmn=

∫ a

0

∫ b

0

cos
(pπx
a

)
cos
(qπy

b

)
cos
(
kπx

a

)
× cos

(
lπy

b

)
sin
(mπx

a

)
sin
(nπy

b

)
dxdy,

Kmn =
(
ky
m2

a2
+ kx

n2

b2

)2(
m2

a2
+
n2

b2

)−2

.

Substituting then (9)–(12) in (1) and using the orthog-
onality condition of sines within the segments 0 ≤ x ≤ a
and 0 ≤ y ≤ b, we obtain an infinite set of coupled non-
linear ordinary differential equations of the second order in
time for defining the generalized coordinates
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∑
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where Ωmn is the natural frequency of the mnth mode of
the shell vibration defined as

Ω2
mn =

E

ρ

[
π4h2

12(1− ν2)

(
m2

a2
+
n2

b2

)2

+Kmn

]
. (14)

The last term in each equation from (13) describes the
influence of the coupled impact interaction of the target
with the impactor of the mass M applied at the point with
the coordinates x0, y0.

It is known [24, 25] that during nonstationary exci-
tation of thin bodies not all possible modes of vibration
would be excited. Moreover, the modes which are strongly
coupled by any of the so-called internal resonance condi-
tions are initiated and dominate in the process of vibration,
in so doing the types of modes to be excited are dependent
on the character of the external excitation.

Thus, in order to study the additional nonlinear phe-
nomenon induced by the coupled impact interaction due to
(13), we suppose that only two natural modes of vibrations
are excited during the process of impact, namely, Ωαβ and
Ωγδ .

Then the set of equations (13) is reduced to the follow-
ing two nonlinear differential equations:

p11ξ̈αβ + p12ξ̈γδ + Ω2
αβξαβ + p13ξ

2
αβ + p14ξ

2
γδ

+ p15ξαβξγδ+p16ξ
3
αβ+p17ξαβξ

2
γδ=0, (15)
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p21ξ̈αβ + p22ξ̈γδ + Ω2
γδξγδ + p23ξ

2
γδ + p24ξ

2
αβ

+ p25ξαβξγδ+p26ξ
3
γδ+p27ξ

2
αβξγδ=0, (16)

where coefficients pij (i, j = 1, 2) depending on impactor’s
mass, the coordinates of the impact point, as well as on the
parameters of the target and the numbers of the induced
modes have the following form:

p11 = 1 +
4M
ρhab

s2
1, p22 = 1 +

4M
ρhab

s2
2,

p12 = p21 =
4M
ρhab

s1s2,

s1 = sin
(απx0

a

)
sin
(
βπy0

b

)
,

s2 = sin
(γπx0

a

)
sin
(
δπy0

b

)
,

while all other coefficients pij (i = 1, 2, j = 3, 4, ..., 7)
governed only by the shell parameters and the numbers of
two interacting impact-induced modes are presented in Ap-
pendix.

III. METHOD OF SOLUTION

In order to solve a set of two nonlinear equations (15)
and (16), we apply the method of multiple time scales [26]
via the following expansions:

ξij(t) = εX1
ij(T0, T1) + ε2X2

ij(T0, T1), (17)

where ij = αβ or γδ, Tn = εnt are new independent
variables, among them: T0 = t is a fast scale characterizing
motions with the natural frequencies, and T1 = εt is a slow
scale characterizing the modulation of the amplitudes and
phases of the modes with nonlinearity.

Considering that

d2

dt2
ξij = ε

(
D2

0X
1
ij

)
+ ε2

(
D2

0X
2
ij + 2εD0D1X

1
ij

)
,

where ij = αβ or γδ, and Dn
i = ∂n/∂Tni (n = 1, 2, i =

0, 1), and substituting the proposed solution (17) in (15)
and (16), after equating the coefficients at like powers of
ε to zero, we are led to a set of recurrence equations to
various orders:
to order ε

p11D
2
0X

1
1 + p12D

2
0X

1
2 + Ω2

1X
1
1 = 0, (18)

p21D
2
0X

1
1 + p22D

2
0X

1
2 + Ω2

2X
1
2 = 0; (19)

to order ε2
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2
0X

2
1 + p12D

2
0X

2
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1X
2
1 = −2p11D0D1X

1
1

− 2p12D0D1X
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1 )2

− p14(X1
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1
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1
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2
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2
1 + p22D

2
0X

2
2 + Ω2

2X
2
2 = −2p21D0D1X

1
1

− 2p22D0D1X
1
2 − p23(X1

1 )2

− p24(X1
2 )2 − p25X

1
1X

1
2 , (21)

where for simplicity is it denoted X1
1 = X1

αβ , X1
2 = X1

γδ ,
X2

1 = X2
αβ , X2

2 = X2
γδ , Ω1 = Ωαβ , and Ω2 = Ωγδ.

A. Solution of Equations at Order of ε

Following Rossikhin et al. [27], we seek the solution
of (18) and (19) in the form:

X1
1 = A1 (T1) eiω1T0 +A2 (T1) eiω2T0 + cc, (22)

X1
2 = α1A1 (T1) eiω1T0 + α2A2 (T1) eiω2T0 + cc, (23)

where A1(T1) and A2(T1) are unknown complex func-
tions, cc is the complex conjugate part to the preceding
terms, and Ā1(T1) and Ā2(T1) are their complex conju-
gates, ω1 and ω2 are unknown frequencies of the coupled
process of impact interaction of the impactor and the target,
and α1 and α2 are yet unknown coefficients.

Substituting (22) and (23) in (18) and (19) and gather-
ing the terms with eiω1T0 and eiω2T0 yields(
−p11ω

2
1 − p12α1ω

2
1 + Ω2

1

)
A1e

iω1T0

+
(
−p11ω

2
2 − p12α2ω

2
2 + Ω2

1

)
A2e

iω2T0 +cc= 0, (24)

(
−p21ω

2
1 − p22α1ω

2
1 + α1Ω2

2

)
A1e

iω1T0

+
(
−p21ω

2
2 − p22α2ω

2
2 + Ω2

2α2

)
A2e

iω2T0 +cc= 0. (25)

In order to satisfy equations (24) and (25), it is a need
to vanish to zero each bracket in these equations. As a re-
sult, from four different brackets we have

α1 = −p11ω
2
1 − Ω2

1

p12ω2
1

, (26)

α1 = − p21ω
2
1

p22ω2
1 − Ω2

2

, (27)

α2 = −p11ω
2
2 − Ω2

1

p12ω2
2

, (28)

α2 = − p21ω
2
2

p22ω2
2 − Ω2

2

. (29)

Since the left-hand side parts of relationships (26) and
(27), as well as (28) and (29) are equal, then their right-
hand side parts should be equal as well. Now equating the
corresponding right-hand side parts of (26), (27) and (28),
(29) we are led to one and the same characteristic equation
for determining the frequencies ω1 and ω2:(

Ω2
1 − p11ω

2
) (

Ω2
2 − p22ω

2
)
− p2

12ω
4 = 0, (30)

whence it follows that

ω2
1,2 =

(
p22Ω2

1 + p11Ω2
2

)
±
√

∆
2 (p11p22 − p2

12)
, (31)
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∆ =
(
p22Ω2

1 − p11Ω2
2

)2
+ 4 Ω2

1Ω2
2p

2
12.

Reference to relationships (31) shows that as the im-
pactor mass M → 0, the frequencies ω1 and ω2 tend to
the natural frequencies of the shell vibrations Ω1 and Ω2,
respectively. Coefficients s1 and s2 depend on the num-
bers of the natural modes involved in the process of impact
interaction, αβ and γδ, and on the coordinates of the con-
tact force application x0, y0, resulting in the fact that their
particular combinations could vanish coefficients s1 and s2

and, thus, coefficients p12 = p21 = 0.

B. Solution of Equations at Order of ε2 for the Case of
Impact-Induced 2:1 Internal Resonance

Now substituting (22) and (23) in (20) and (21), we
obtain

p11D
2
0X

2
1 + p12D

2
0X

2
2 + Ω2

1X
2
1

= −2iω1(p11 + α1p12)eiω1T0D1A1

−2iω2(p11 + α2p12)eiω2T0D1A2

−(p13 + α2
1p14 + α1p15)A1

[
A1e

2iω1T0 + Ā1

]
−(p13 + α2

2p14 + α2p15)A2

[
A2e

2iω2T0 + Ā2

]
−2 [p13 + α1α2p14 + (α1 + α2)p15]A1

×
[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc,

(32)
p21D

2
0X

2
1 + p22D

2
0X

2
2 + Ω2

2X
2
2

= −2iω1(p21 + α1p22)eiω1T0D1A1

−2iω2(p21 + α2p22)eiω2T0D1A2

−(p23 + α2
1p24 + α1p25)A1

[
A1e

2iω1T0 + Ā1

]
−(p23 + α2

2p24 + α2p25)A2

[
A2e

2iω2T0 + Ā2

]
−2 [p23 + α1α2p24 + (α1 + α2)p25]A1

×
[
A2e

i(ω1+ω2)T0 + Ā2e
i(ω1−ω2)T0

]
+ cc.

(33)
Reference to equations (32) and (33) shows that the

following impact-induced two-to-one internal resonance
could occur:

ω1 = 2ω2. (34)

Condition (34) could be initiated by the impactor dur-
ing the impact interaction with the target, i.e., the doubly
curved shallow panel, since the frequencies ω1 and ω2 de-
pend not only on the natural frequencies of two induced
modes of the vibration of the target, but they depend also
by the mass of the striker and the position of the impact,
what it is evident from (31).

Thus, when the frequencies ω1 and ω2 are coupled
by the impact-induced two-to-one internal resonance (34),
equations (32) and (33) could be rewritten in the following
form:

p11D
2
0X

2
1 + p12D

2
0X

2
2 + Ω2

1X
2
1

= B1 exp(iω1T0) +B2 exp(iω2T0)

+Reg + cc,

(35)

p21D
2
0X

2
1 + p22D

2
0X

2
2 + Ω2

2X
2
2

= B3 exp(iω1T0) +B4 exp(iω2T0)

+Reg + cc,

(36)

where all regular terms are designated by Reg, and

B1 = −2iΩ2
1ω
−1
1 D1A1 −

(
p13 + α2

2p14 + α2p15

)
A2

2,

B2 = −2iΩ2
1ω
−1
2 D1A2 − 2[p13 + α1α2p14

+ (α1 + α2) p15]A1Ā2,

B3 = −2iΩ2
2ω
−1
1 α1D1A1 −

(
p23 + α2

2p24 + α2p25

)
A2

2,

B4 = −2iΩ2
2ω
−1
2 α2D1A2 − 2[p23 + α1α2p24

+ (α1 + α2) p25]A1Ā2.

Let us show that the terms with the exponents
exp(±iωiT0) (i = 1, 2) produce circular terms. For this
purpose we choose a particular solution in the form

X2
1 p = C1 exp(iω1T0) + cc,

X2
2 p = C2 exp(iω1T0) + cc, (37)

or
X2

1 p = C ′1 exp(iω2T0) + cc,
X2

2 p = C ′2 exp(iω2T0) + cc, (38)

where C1, C2 and C ′1, C ′2 are arbitrary constants.
Substituting the proposed solution in (35) and (36) or

in (37) and (38), we are led to the following sets of equa-
tions, respectively:p12ω

2
1 (α1C1 − C2) = B1,

p21ω
2
1

(
−C1 + 1

α1
C2

)
= B3,

(39)

or p12ω
2
2 (α2C

′
1 − C ′2) = B2,

p21ω
2
2

(
−C ′1 + 1

α2
C ′2

)
= B4.

(40)

From the sets of equations (39) and (40) it is evi-
dent that the determinants comprised from the coefficients
standing at C1, C2 and C ′1, C ′2 are equal to zero, therefore,
it is impossible to determine the arbitrary constants C1, C2

and C ′1, C ′2 of the particular solutions (37) and (38), what
proves the above proposition concerning the circular terms.

In order to eliminate the circular terms, the terms pro-
portional to eiω1T0 and eiω2T0 should be vanished to zero
puttingBi = 0 (i = 1, 2, 3, 4). So we obtain four equations
for defining two unknown amplitudes A1(t) and A2(t).
However, it is possible to show that not all of these four
equations are linear independent from each other.

For this purpose, let us first apply the operators
(p22D

2
0 + Ω2

2) and (−p12D
2
0) to (35) and (36), respec-

tively, and then add the resulting equations. This procedure
will allow us to eliminate X2

2 . If we apply the operators
(−p12D

2
0) and (p11D

2
0 +Ω2

1) to (35) and (36), respectively,
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and then add the resulting equations. This procedure will
allow us to eliminate X2

1 . Thus, we obtain[
(p11p22−p2

12)D4
0 +(p11Ω2

2+p22Ω2
1)D2

0 +Ω2
1Ω2

2

]
X2

1

=
[
(p22D

2
0 + Ω2

2)B1 − p12D
2
0B3

]
exp(iω1T0)

+
[
(p22D

2
0 + Ω2

2)B2 − p12D
2
0B4

]
exp(iω2T0)

+ Reg + cc,
(41)[

(p11p22−p2
12)D4

0 +(p11Ω2
2+p22Ω2

1)D2
0 +Ω2

1Ω2
2

]
X2

2

=
[
−p12D

2
0B1 + (p11D

2
0 + Ω2

1)B3

]
exp(iω1T0)

+
[
−p12D

2
0B2 + (p11D

2
0 + Ω2

1)B4

]
exp(iω2T0)

+ Reg + cc.
(42)

To eliminate the circular terms from equations (41) and
(42), it is necessary to vanish to zero the terms in each
square bracket. As a result we obtain{

(Ω2
2 − p22ω

2
1)B1 + p12ω

2
1B3 = 0

p12ω
2
1B1 + (Ω2

1 − p11ω
2
1)B3 = 0

(43)

and {
(Ω2

2 − p22ω
2
2)B2 + p12ω

2
2B4 = 0

p12ω
2
2B2 + (Ω2

1 − p11ω
2
2)B4 = 0

(44)

From equations (43) and (44) it is evident that the de-
terminant of each set of equations is reduced to the char-
acteristic equation (30), whence it follows that each pair
of equations is linear dependent, therefore for further treat-
ment we should take only one equation from each pair in
order that these two chosen equations are to be linear inde-
pendent. Thus, for example, taking the first equations from
each pair and considering relationships (27) and (29), we
have

B1 + α1B3 = 0, (45)

B3 + α2B4 = 0. (46)

Substituting values of B1-B4 in (45) and (46), we ob-
tain the following solvability equations:

2iω1D1A1 +
b1
k1
A2

2 = 0, (47)

2iω2D1A2 +
b2
k2
A1Ā2 = 0, (48)

where

ki =
Ω2

1 + α2
iΩ

2
2

ω2
i

(i = 1, 2),

b1 = p13 + α2
2p14 + α2p15 + α1(p23 + α2

2p24 + α2p25),

b2 = 2 {p13 + α1α2p14 + (α1 + α2)p15

+α2[p23 + α1α2p24 + (α1 + α2)p25]} .

Let us multiply equations (47) and (48) by Ā1 and
Ā2, respectively, and find their complex conjugates. After
adding every pair of the mutually adjoint equations with

each other and subtracting one from another, as a result we
obtain

2iω1

(
Ā1D1A1−A1D1Ā1

)
+
b1
k1

(
A2

2Ā1+Ā2
2A1

)
=0,

(49)

2iω1

(
Ā1D1A1+A1D1Ā1

)
+
b1
k1

(
A2

2Ā1−Ā2
2A1

)
=0,

(50)

2iω2

(
Ā2D1A2−A2D1Ā2

)
+
b2
k2

(
A1Ā

2
2+Ā1A

2
2

)
=0,

(51)

2iω2

(
Ā2D1A2+A2D1Ā2

)
+
b2
k2

(
A1Ā

2
2−Ā1A

2
2

)
=0.

(52)
Representing A1(T1) and A2(T1) in equations (49)–

(52) in the polar form

Ai(T1) = ai(T1)eiϕi(T1) (i = 1, 2), (53)

we are led to the system of four nonlinear differential equa-
tions in a1(T1), a2(T1), ϕ1(T1), and ϕ2(T1)

(a2
1). = − b1

k1ω1
a1a

2
2 sin δ, (54)

ϕ̇1 −
b1

2k1ω1
a−1

1 a2
2 cos δ = 0, (55)

(a2
2). =

b2
k2ω2

a1a
2
2 sin δ, (56)

ϕ̇2 −
b2

2k2ω2
a1 cos δ = 0, (57)

where δ = 2ϕ2−ϕ1, and a dot denotes differentiation with
respect to T1.

From equations (54) and (56) we could find that

b2
k2ω2

(a2
1). +

b1
k1ω1

(a2
2). = 0 (58)

Multiplying equation (58) by MV0 and integrating
over T1, we obtain the first integral of the set of equations
(54)–(57), which is the law of conservation of energy,

MV0

(
b2
k2ω2

a2
1 +

b1
k1ω1

a2
2

)
= K0, (59)

where K0 is the initial energy.
Considering that K0 = 1

2 MV 2
0 , equation (59) is re-

duced to the following form:

b2
k2ω2

a2
1 +

b1
k1ω1

a2
2 =

V0

2
. (60)

Let us introduce into consideration a new function
ξ(T1) in the following form:

a2
1 =

k2ω2

b2
E0ξ(T1), a2

2 =
k1ω1

b1
E0 [1− ξ(T1)] , (61)

where E0 = V0/2.
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sumed that the shell is simply supported and partial dif-
ferential equations have been obtained in terms of shell’s
transverse displacement and Airy’s stress function. The lo-
cal bearing of the shell and impactor’s materials has been
neglected with respect to the shell deflection in the contact
region, and therefore, the contact force is found analytically
without utilizing the Hertzian contact law. The equations
of motion have been reduced to a set of infinite nonlinear
ordinary differential equations of the second order in time
and with cubic and quadratic nonlinearities in terms of the
generalized displacements. Assuming that only two natural
modes of vibrations dominate and interact during the pro-
cess of impact and applying the method of multiple time
scales, the set of equations has been obtained, which al-
lows one to find the time dependence of the contact force
and to determine the contact duration and the maximal con-
tact force.

Further the approach proposed by Rossikhin et al. [21]
has been generalized by the authors [22] for studying the
influence of the impact-induced three-to-one internal reso-
nances on the low velocity impact response of a nonlinear
doubly curved shallow shell with rectangular platform.

Such an additional nonlinear phenomenon as the inter-
nal resonance could be examined only via analytical treat-
ment, since any of existing numerical procedures could not
catch this subtle phenomenon. Moreover, impact-induced
internal resonance phenomena should be studied in detail
as their initiation during impact interaction may lead to the
fact that the impacted shell could occur under extreme load-
ing conditions resulting in its invisible and/or visible dam-
age and even failure.

Because of this and to investigate the mechanism of
impact-induced internal resonance, in the present paper, a
semi-analytical method proposed previously [21, 22] is ap-
plied to investigate doubly curved shallow panels with a
rectangular boundary and simply supported boundary con-
dition subjected to impact load, resulting in the impact-
induced two-to-one internal resonance.

II. PROBLEM FORMULATION AND GOVERNING

EQUATIONS

Assume that an elastic or rigid sphere of mass M moves
along the z-axis towards a thin-walled doubly curved shell
with thickness h, curvilinear lengths a and b, principle cur-
vatures kx and ky and rectangular base, as shown in Fig. 1.
Impact occurs at the moment t = 0 with the low velocity
εV0 at the pointN with Cartesian coordinates x0, y0, where
ε is a small dimensionless parameter.

According to the Donnell-Mushtari nonlinear shallow
shell theory [23], the equations of motion in terms of lateral

Figure 1: Geometry of the doubly curved shallow shell

deflection w and Airy’s stress function φ have the form

D

h

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
=
∂2w

∂x2

∂2φ

∂y2

+
∂2w

∂y2

∂2φ

∂x2
− 2

∂2w

∂x∂y

∂2φ

∂x∂y

+ky
∂2φ

∂x2
+ kx

∂2φ

∂y2
+
F

h
− ρẅ, (1)

1
E

(
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4

)
= −∂

2w

∂x2

∂2w

∂y2

+
(
∂2w

∂x∂y

)2

− ky
∂2w

∂x2
− kx

∂2w

∂y2
, (2)

whereD = Eh3

12(1−ν2) is the cylindrical rigidity, ρ is the den-
sity, E and ν are the elastic modulus and Poisson’s ratio,
respectively, t is time, F = P (t)δ(x− x0)δ(y − y0) is the
contact force, P (t) is yet unknown function, δ is the Dirac
delta function, x and y are Cartesian coordinates, overdots
denote time-derivatives, φ(x, y) is the stress function which
is the potential of the in-plane force resultants

Nx = h
∂2φ

∂y2
, Ny = h

∂2φ

∂x2
, Nxy = −h ∂2φ

∂x∂y
. (3)

The equation of motion of the sphere is written as

Mz̈ = −P (t) (4)

subjected to the initial conditions

z(0) = 0, ż(0) = εV0, (5)

where z(t) is the displacement of the sphere, in so doing

z(t) = w(x0, y0, t). (6)
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Figure 2: Phase portrait: Ω1 = 2Ω2

velocity along the vertical lines δ = ±πn (n = 0, 1, 2, ...)
has the aperiodic character, while in the vicinity of the line
ξ = 1/3 it possesses the periodic character.

IV. INITIAL CONDITIONS

In order to construct the final solution of the problem
under consideration, i.e. to solve the set of equations (54)–
(57) involving the functions a1(T1), a2(T1), or ξ(T1), as
well as ϕ1(T1), and ϕ2(T1), or δ(T1), it is necessary to use
the initial conditions

w(x, y, 0) = 0, (72)

ẇ(x0, y0, 0) = εV0, (73)

b2
k2ω2

a2
1(0) +

b1
k1ω1

a2
2(0) = E0. (74)

The two-term relationship for the displacement w (9)
within an accuracy of ε according to (17) has the form

w(x, y, t) = ε
[
X1
αβ(T0, T1) sin

(
απx
a

)
sin
(
βπy
b

)
+X1

γδ(T0, T1) sin
(
γπx
a

)
sin
(
δπy
b

)]
+O(ε2).

(75)
Substituting (22) and (23) in (75) with due account for

(53) yields

w(x, y, t) = 2ε
{
a1(εt) cos [ω1t+ ϕ1(εt)]

+a2(εt) cos [ω2t+ ϕ2(εt)]
}

sin
(
απx
a

)
sin
(
βπy
b

)
+2ε

{
α1a1(εt) cos [ω1t+ ϕ1(εt)]

+α2a2(εt)cos[ω2t+ϕ2(εt)]
}

sin
(
γπx
a

)
sin
(
δπy
b

)]
+O(ε2).

(76)
Differentiating (76) with respect to time t and limiting

ourselves by the terms of the order of ε, we could find the
velocity of the shell at the point of impact as follows

ẇ(x0, y0, t) = −2ε
{
ω1a1(εt) sin [ω1t+ ϕ1(εt)]

+ω2a2(εt) sin [ω2t+ ϕ2(εt)]
}
s1

−2ε
{
α1ω1a1(εt) sin [ω1t+ ϕ1(εt)]

+α2ω2a2(εt) sin [ω2t+ ϕ2(εt)]
}
s2 +O(ε2).

(77)

Substituting (76) in the first initial condition (72) yields

a1(0) cosϕ1(0) + a2(0) cosϕ2(0) = 0, (78)

α1a1(0) cosϕ1(0) + α2a2(0) cosϕ2(0) = 0. (79)

From equations (78) and (79) we find that

cosϕ1(0) = 0, cosϕ2(0) = 0, (80)
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whence it follows that

ϕ1(0) = ±π
2
, ϕ2(0) = ±π

2
, (81)

and
cos δ0 = cos [2ϕ2(0)− ϕ1(0)] = 0, (82)

i.e.,
δ0 = ±π

2
± 2πn. (83)

The signs in (81) should be chosen considering the fact
that the initial amplitudes are positive values, i.e. a1(0) >
0 and a2(0) > 0. Assume for definiteness that

ϕ1(0) = −π
2
, ϕ2(0) =

π

2
. (84)

Substituting now (77) in the second initial condition
(73) with due account for (84), we obtain

ω1(s1 + α1s2)a1(0)− ω2(s1 + α2s2)a2(0) = E0. (85)

From equations (74) and (85) we could determine the
initial amplitudes

a2(0) =
ω1(s1 + α1s2)
ω2(s1 + α2s2)

a1(0)− E0

ω2(s1 + α2s2)
, (86)

c1a
2
1(0) + c2a1(0) + c3 = 0, (87)

where

c1 = 1 +
b1k2ω1(s1 + α1s2)2

b2k1ω2(s1 + α2s2)2
,

c2 = −b1k2(s1 + α1s2)2E0

b2k1ω2(s1 + α2s2)2
,

c3 =
b1k2E

2
0

b2k1ω1ω2(s1 + α2s2)2
− k2ω2E0

b2
.

From equations (86) and (87) it is evident that the ini-
tial magnitudes depend on the mass and the initial velocity
of the impactor, on the coordinates of the point of impact,
as well as on the numbers of the two modes induced by the
impact.

Considering (82), from (66) we find the value of con-
stant G0

G0 = 0 (88)

Reference to (67) shows that G0 could be zero in three
cases: at ξ0 = 0, ξ0 = 1, or when cos δ0 = 0. The
above analysis of the phase portrait has revealed that the
case ξ0 = 0 is not realized. As for the case ξ0 = 1, then
the solution for the phase modulated motion takes the form
of (71). However, for the found magnitudes of the initial
phase difference δ0 (83), the value of tan

(
δ0
2 + π

4

)
in (71)

is either equal to zero or to infinity, what means that this
case could not be realized as well.

That is why in further treatment we will analyze only
the third case, resulting in the amplitude modulated motion
(70) with

δ(T1) = δ0 = const. (89)

Thus, we have determined all necessary constants from
the initial conditions, therefore we could proceed to the
construction of the solution for the contact force.

V. CONTACT FORCE

Substituting relationship (77) differentiated one time
with respect to time t in (4), we could obtain the contact
force P (t)

P (t) = 2εM
{
ω2

1a1(εt) cos [ω1t+ ϕ1(εt)]

+ω2
2a2(εt) cos [ω2t+ ϕ2(εt)]

}
s1

+2εM
{
α1ω

2
1a1(εt) cos [ω1t+ ϕ1(εt)]

+α2ω
2
2a2(εt) cos [ω2t+ ϕ2(εt)]

}
s2 +O(ε2).

(90)

From equations (55) and (57) with due account for (89)
it follows that

ϕ1(T1) = const = ϕ1(0),
ϕ2(T1) = const = ϕ2(0).

(91)

Considering (91) and (84), equation (90) is reduced to

P (t) = 2εMω2
2

{
8(s1 + α1s2)a1(εt) cosω2t

−(s1 + α2s2)a2(εt)
}

sinω2t.
(92)

Substituting (61) in (92), we finally obtained

P (t) = 2εMω2
2

√
E0

{
8(s1 + α1s2)

×
√

k2ω2
b2

√
ξ(εt) cosω2t

− (s1 + α2s2)
√

k1ω1
b1

√
1− ξ(εt)

}
sinω2t,

(93)

where the function ξ(εt) is defined by (70).
Since the duration of contact is a small value, then P (t)

could be calculated via an approximate formula, which is
obtained from (92) at εt ≈ 0

P (t) ≈ 16εMω2
2

(
cosω2t− 1

8 æ
)

×(s1 + α1s2)a1(0) sinω2t+O(ε2),
(94)

where the dimensionless parameter æ

æ =
(s1 + α2s2)
(s1 + α1s2)

a2(0)
a1(0)

(95)

is defined by the parameters of two impact-induced modes
coupled by the two-to-one internal resonance (34), as well
as by the coordinates of the point of impact and the initial
velocity of impact.

The dimensionless time τ = ω2t dependence of the
dimensionless contact force P ∗

P ∗(τ) ≈
(

cos τ − 1
8

æ
)

sin τ, (96)
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Figure 3: Dimensionless time dependence of the dimen-
sionless contact force

where

P ∗(τ) =
P (t)

16εMω2
2(s1 + α1s2)a1(0)

,

is shown in Figure 3 for the different magnitudes of the
parameter æ: 0.008, 1, 2, and 4.

Reference to Figure 3 shows that the decrease in the
parameter æ results in the increase of both the maximal
contact force and the duration of contact. In other words,
from Figure 3 it is evident that the peak contact force and
the duration of contact depend essentially upon the param-
eters of two impact-induced modes coupled by the two-to-
one internal resonance (34).

VI. PARTICULAR CASE

It has been emphasized in the above reasoning that the
initial amplitudes and phases, as well as the contact force
depend essentially on the location of the point of impact,
i.e., on the coordinates of this point.

Let us consider below a particular case when one of
the coefficients s1 or s2 vanishes to zero due to a partic-
ular combination the position of the impact point and the
numbers of impact-induced modes of vibration. We will
examine below the case s1 6= 0 and s2 = 0, since another
one, when s1 = 0 and s2 6= 0, could be treated in a similar
way.

Thus for this particular case the coefficients p22 = 1,
p12 = p21 = 0, and nonlinear differential equations (15)
and (16) are reduced to the following set of equations:

p11ξ̈αβ + Ω2
αβξαβ + p13ξ

2
αβ + p14ξ

2
γδ

+ p15ξαβξγδ+p16ξ
3
αβ+p17ξαβξ

2
γδ=0, (97)

ξ̈γδ + Ω2
γδξγδ + p23ξ

2
γδ + p24ξ

2
αβ

+ p25ξαβξγδ+p26ξ
3
γδ+p27ξ

2
αβξγδ=0, (98)

where only one coefficient p11 depend on impactor’s mass,
the coordinates of the impact point, as well as on the param-
eters of the target and the numbers of the induced modes.

Reference to (97) and (98) shows that, despite from
(15) and (16), the linear parts of (97) and (98) are uncou-
pled. Therefore using expansions (17) and the method of
multiple time scales, we arrive at the following set of re-
currence equations to various orders:
to order ε

p11D
2
0X

1
1 + Ω2

1X
1
1 = 0, (99)

D2
0X

1
2 + Ω2

2X
1
2 = 0; (100)

to order ε2

p11D
2
0X

2
1 + Ω2

1X
2
1 = −2p11D0D1X

1
1 − p13(X1

1 )2

− p14(X1
2 )2 − p15X

1
1X

1
2 , (101)

D2
0X

2
2 + Ω2

2X
2
2 = −2D0D1X

1
2 − p23(X1

1 )2

− p24(X1
2 )2 − p25X

1
1X

1
2 , (102)

where for simplicity once again is it denoted X1
1 = X1

αβ ,
X1

2 = X1
γδ , X

2
1 = X2

αβ , X2
2 = X2

γδ, Ω1 = Ωαβ , and
Ω2 = Ωγδ .

The solution of (99) and (100) has the form

X1
1 = A1(T1) eiω1T0 + Ā1(T1)e−iω1T0 , (103)

X1
2 = A2(T1) eiΩ2T0 + Ā2(T1)e−iΩ2T0 , (104)

where ω2
1 = Ω2

1/p11.
Substituting (103) and (104) in (101) and (102) yields

p11D
2
0X

2
1 + Ω2

1X
2
1 = −2iω1p11D1A1e

iω1T0

−p13A
2
1e

2iω1T0 − p13A1Ā1 − p14A
2
2e

2iΩ2T0

−p14A2Ā2 − p15A1A2e
i(ω1+Ω2)T0

+A1Ā2e
i(ω1−Ω2)T0 + cc,

(105)

D2
0X

2
2 + Ω2

2X
2
2 = −2iΩ2D1A2e

iω2T0

−p23A
2
2e

2iω2T0 − p23A2Ā2 − p24A
2
1e

2iω1T0

−p24A1Ā1 − p25A1A2e
i(ω1+ω2)T0

−p25A1Ā2e
i(ω1−ω2)T0 + cc.

(106)

Reference to equations (105) and (106) shows that the
following impact-induced two-to-one internal resonances
could occur:

ω1 = 2Ω2, (107)

or
Ω2 = 2ω1. (108)

A. Internal Resonance ω1 = 2Ω2

In this case we obtain the following solvability equa-
tions:

2iω1D1A1 +
p14

p11
A2

2 = 0, (109)
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2iω2D1A2 + p25A1Ā2 = 0. (110)

Comparison of solvability equations (109) and (110)
with those obtained above for the general case, i.e., with
(47) and (48), shows that they are similar in structure within
an accuracy of the coefficients. That is why the solution of
(47) and (48) presented in Sec. III B is valid for equations
(109) and (110) as well under the proper substitution of
coefficients b1/k1 and b2/k2 with p14/p11 and p25, respec-
tively.

In the case under consideration, the two-term relation-
ship for the displacement w (9) within an accuracy of ε
according to (17) has the form

w(x, y, t) = 2ε
{
a1(εt) cos [ω1t+ ϕ1(εt)]

× sin
(
απx
a

)
sin
(
βπy
b

)
+a2(εt)cos[Ω2t+ϕ2(εt)] sin

(
γπx
a

)
sin
(
δπy
b

)}
+O(ε2).

(111)
Differentiating (111) with respect to time t and limiting

ourselves by the terms of the order of ε, we could find the
velocity of the shell at the point of impact as follows

ẇ(x0, y0, t) = −2εω1s1a1(εt) sin [ω1t+ ϕ1(εt)]+O(ε2).
(112)

Now substituting (111) and (112) in the initial condi-
tions (72)-(74), we could find the initial amplitudes and
phases:

ϕ1(0) = −π
2
, ϕ2(0) =

π

2
. (113)

a1(0) =
V0

2ω1s1
, a2(0) =

√
V0p25

2Ω2

(
1− V0p11

2ω1s2
1p14

)
.

(114)
As a result the contact force could be written as

P (t) ≈ 2εMω2
1a1(0) sinω1t = εMV0ω1s

−1
1 sinω1t,

= 2εMV0Ω2s
−1
1 sin 2Ω2t. (115)

Reference to (115) shows that the contact force de-
pends on the mass of the striker, its initial velocity, the co-
ordinates of the point wherein the impact occur ed, as well
as on the frequencies and umbers of two modes coupled by
the impact-induced two-to-one internal resonance (107).

Relationship for the time-dependence of the contact
force (115) obtained above analytically verifies the as-
sumption for the contact force proposed in [1] a known
sine-dependent input to the analysis.

Note that another particular case of the impact-induced
two-to-one internal resonance (108) could be treated in a
similar way.

As for the particular case when s1 = s2 = 0, then it
could not be realized in this problem, since this condition
results in the violation of the second initial condition (73).

VII. CONCLUSION

In the present paper, a new approach proposed recently
by the authors for the analysis of the impact interactions
of nonlinear doubly curved shallow shells with rectangu-
lar base under the low-velocity impact by an elastic sphere
[21, 22] has been generalized for investigating the impact-
induced two-to-one internal resonance.

Such an approach differs from the Galerkin method,
wherein resonance phenomena are not involved [1]. Since
is it assumed that shell’s displacements are finite, then the
local bearing of the shell and impactor’s materials is ne-
glected with respect to the shell deflection in the contact
region. In other words, the Hertz’s theory, which is tradi-
tionally in hand for solving impact problems, was not used
in the present study; instead, the method of multiple time
scales has been adopted, which is used with much success
for investigating vibrations of nonlinear systems subjected
to the conditions of the internal resonance, as well as to find
the time dependence of the contact force.

It has been shown that the time dependence of the con-
tact force depends essentially on the position of the point of
impact and the parameters of two impact-induced modes
coupled by the internal resonance. Besides, the contact
force depends essentially on the magnitude of the initial
energy of the impactor. This value governs the place on
the phase plane, where a mechanical system locates at the
moment of impact, and the phase trajectory, along which it
moves during the process of impact.

It is shown that the intricate P (t) dependence at
impact-induced internal resonance (90) give way to rather
simple sine time-dependence, what is an accordance with
a priori assumption of some researchers about a sine-like
character of the contact force with time [1], [28]–[31].

The procedure suggested in the present paper could be
generalized for the analysis of impact response of plates
and shells when their motions are described by three or five
nonlinear differential equations.
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